2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)
Download PDF

Abstract

Among all proposed Physical Unclonable Functions (PUFs), those based on Ring Oscillators (ROs) are a popular solution for ASICs as well as for FPGAs. However, compared to other PUF architectures, oscillators emit electromagnetic (EM) signals over a relatively long run time, which directly reveal their unique frequencies. Previous work by Merli et al. exploited this fact by global EM measurements and proposed a countermeasure for their attack. In this paper, we first demonstrate that it is feasible to measure and locate the EM emission of a single tiny RO consisting of only three inverters, implemented within a single configurable logic block of a Xilinx Spartan-3A. Second, we present a localized EM attack for standard and protected RO PUFs. We practically investigate the proposed side-channel attack on a protected FPGA RO PUF implementation. We show that RO PUFs are prone to localized EM attacks and propose two countermeasures, namely, randomization of RO measurement logic and interleaved placement.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles