2008 International Conference on Application-Specific Systems, Architectures and Processors
Download PDF

Abstract

In this paper we extend the domain of applicability of the E-method [7, 8], as a hardware-oriented method for evaluating elementary functions using polynomial and rational function approximations. The polynomials and rational functions are computed by solving a system of linear equations using digit-serial iterations on simple and highly regular hardware. For convergence, these systems must be diagonally dominant. The E-method offers an efficient way for the fixed-point evaluation of polynomials and rational functions if their coefficients conform to the diagonal dominance condition. Until now, there was no systematic approach to obtain good approximations to f over an interval [a, b] by rational functions satisfying the constraints required by the E-method. In this paper, we present such an approach which is based on linear programming and lattice basis reduction. We also discuss a design and performance characteristics of a corresponding implementation.
Like what you’re reading?
Already a member?Sign In
Member Price
$11
Non-Member Price
$21
Add to CartSign In
Get this article FREE with a new membership!

Related Articles