Abstract
Eldercare monitoring using non-wearable sensors is a candidate solution for improving care and reducing costs. Abnormal sensor patterns produced by certain resident behaviors could be linked to early signs of illness. We propose an unsupervised method for detecting abnormal behavior patterns based on a new context preserving representation of daily activities. A preliminary analysis of the method was conducted on data collected in TigerPlace, an eldercare facility that promotes aging-in-place. Sensors firings of each day are converted into sequences of daily activities. Using the proposed method, a day with hundreds of sequences is converted into a single data point representing that day and preserving the context of the daily routine at the same time. We obtained an average Area Under the Curve (AUC) of 0.9 in detecting days where elder adults need to be assessed.