2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Download PDF

Abstract

Total internal reflection fluorescence (TIRF) microscopy excites a thin evanescent field which theoretically decays exponentially. Each TIRF image is actually the projection of a 3-D volume and hence cannot alone produce an accurate localization of structures in the z-dimension, however, it provides greatly improved axial resolution for biological samples. Multiple angle-TIRF microscopy allows controlled variation of the incident angle of the illuminating laser beam, thus generating a set of images of different penetration depths with the potential to reconstruct the 3-D volume of the sample. With the ultimate goal to quantify important biological parameters of microtubules, we present a method to reconstruct 3-D position and orientation of microtubules based on multi-angle TIRF data, as well as experimental calibration of the actual decay function of the evanescent field at each angle after taking into consideration the effect of point spread function, quantum efficiency and photon collection efficiency.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles