2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications
Download PDF

Abstract

Due to power wall and slow performance improvement in a single core micro-architecture, multiple even many cores based processors rose as the main stream processor. Nevertheless, thermal threats regarding reliability and lifetime of processors are still among the major concerns which received much attention in terms of algorithms and hardware design to reduce processor temperature and keep application performance in recent years. In this paper, we propose and implement a thermal-aware Round-Robin scheduling algorithm for process migration in the Linux environment on a quad-core processor. Bearing designer's goals in mind, such as performance, load-balancing, and reliability, we managed to achieve much bigger temperature fall than previous results of Round-Robin scheduler on a dual-core processor as well as baseline Linux scheduler on a quad-core processor. Moreover, the performance loss due to scheduling overhead is modest in our approach. Our results indicate that thermal-aware scheduling is a valid approach to tackling thermal issues on multi-core processors. There will be increasing demand for thermal-aware scheduling as the number of cores on a single processor increases.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles