Abstract
Many natural image sets, depicting objects whose appearance is changing due to motion, pose or light variations, can be considered samples of a low-dimension nonlinear manifold embedded in the high-dimensional observation space (the space of all possible images). The main contribution of our work is represented by a Supervised Laplacian Eigemaps (S-LE) algorithm, which exploits the class label information for mapping the original data in the embedded space. Our proposed approach benefits from two important properties: i) it is discriminative, and ii) it adaptively selects the neighbors of a sample without using any predefined neighborhood size. Experiments were conducted on four face databases and the results demonstrate that the proposed algorithm significantly outperforms many linear and non-linear embedding techniques. Although we've focused on the face recognition problem, the proposed approach could also be extended to other category of objects characterized by large variance in their appearance.