2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Download PDF

Abstract

The influence of DNA cis-regulatory elements on a gene's expression has been intensively studied. However, little is known about expressions driven by trans-acting DNA hotspots. DNA hotspots harboring copy number aberrations are recognized to be important in cancer as they influence multiple genes on a global scale. The challenge in detecting trans-effects is mainly due to the computational difficulty in detecting weak and sparse trans-acting signals amidst co-occuring passenger events. We propose an integrative approach to learn a sparse interaction network of DNA copy-number regions with their downstream targets in a breast cancer dataset. Information from this network helps distinguish copy-number driven from copy-number independent expression changes on a global scale. Our result further delineates cis- and trans-effects in a breast cancer dataset, for which important oncogenes such as ESR1 and ERBB2 appear to be highly copy-number dependent. Further, our model is shown to be efficient and in terms of goodness of fit no worse than other state-of the art predictors and network reconstruction models using both simulated and real data.
Like what you’re reading?
Already a member?Sign In
Member Price
$11
Non-Member Price
$21
Add to CartSign In
Get this article FREE with a new membership!

Related Articles