2008 Eighth IEEE International Conference on Data Mining
Download PDF

Abstract

Semi-supervised classification methods aim to exploit labelled and unlabelled examples to train a predictive model. Most of these approaches make assumptions on the distribution of classes. This article first proposes a new semi-supervised discretization method which adopts very low informative prior on data. This method discretizes the numerical domain of a continuous input variable, while keeping the information relative to the prediction of classes. Then, an in-depth comparison of this semi-supervised method with the original supervised MODL approach is presented. We demonstrate that the semi-supervised approach is asymptotically equivalent to the supervised approach, improved with a post-optimizationof the intervals bounds location.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles