Abstract
Community Question Answering (CQA) sites have become valuable repositories that host a massive volume of human knowledge. How can we detect a high-value answer which clears the doubts of many users? Can we tell the user if the question s/he is posting would attract a good answer? In this paper, we aim to answer these questions from the perspective of the voting outcome by the site users. Our key observation is that the voting score of an answer is strongly positively correlated with that of its question, and such correlation could be in turn used to boost the prediction performance. Armed with this observation, we propose a family of algorithms to jointly predict the voting scores of questions and answers soon after they are posted in the CQA sites. Experimental evaluations demonstrate the effectiveness of our approaches.