2009 IEEE Conference on Computer Vision and Pattern Recognition
Download PDF

Abstract

Example-based super-resolution recovers missing high frequencies in a magnified image by learning the correspondence between co-occurrence examples at two different resolution levels. As high-resolution examples usually contain more details and are of higher dimensionality in comparison with low-resolution ones, the mapping from low-resolution to high-resolution is an ill-posed problem. Rather than imposing more complicated mapping constraints, we propose to improve the mapping accuracy by enhancing low-resolution examples in terms of mapped features, e.g., derivatives and primitives. A feature enhancement method is presented through a combination of interpolation with prefiltering and non-blind sparse prior deblurring. By enhancing low-resolution examples, unique feature information carried by high-resolution examples is decreased. This regularization reduces the intrinsic dimensionality disparity between two different resolution examples and thus improves the feature mapping accuracy. Experiments demonstrate our super-resolution scheme with feature enhancement produces high quality results both perceptually and quantitatively.
Like what you’re reading?
Already a member?Sign In
Member Price
$11
Non-Member Price
$21
Add to CartSign In
Get this article FREE with a new membership!

Related Articles