2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Download PDF

Abstract

We propose a novel, large-scale, structure-from-motion framework that advances the state of the art in data scalability from city-scale modeling (millions of images) to world-scale modeling (several tens of millions of images) using just a single computer. The main enabling technology is the use of a streaming-based framework for connected component discovery. Moreover, our system employs an adaptive, online, iconic image clustering approach based on an augmented bag-of-words representation, in order to balance the goals of registration, comprehensiveness, and data compactness. We demonstrate our proposal by operating on a recent publicly available 100 million image crowd-sourced photo collection containing images geographically distributed throughout the entire world. Results illustrate that our streaming-based approach does not compromise model completeness, but achieves unprecedented levels of efficiency and scalability.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles