Abstract
We propose an adaptive and effective multimodal peripheral-fovea sensor design for real-time targets tracking. This design is inspired by the biological vision systems for achieving real-time target detection and recognition with a hyperspectral/range fovea and panoramic peripheral view. A realistic scene simulation approach is used to evaluate our sensor design and the related data exploitation algorithms before a real sensor is made. The goal is to reduce development time and system cost while achieving optimal results through an iterative process that incorporates simulation, sensing, processing and evaluation. Important issues such as multimodal sensory component integration, region of interest extraction, target tracking, hyperspectral image analysis and target signature identification are discussed.