Abstract
As the feature size of FPGA shrinks to nanometers, soft errors increasingly become an important concern for SRAM-based FPGAs. Without consideration of the application level impact, existing reliability-oriented placement and routing approaches analyze soft error rate (SER) only at the physical level, consequently completing the design with suboptimal soft error mitigation. Our analysis shows that the statistical variation of the application level factor is significant. Hence in this work, we first propose a cube-based analysis to efficiently and accurately evaluate the application level factor. And then we propose a cross-layer optimized placement and routing algorithm to reduce the SER by incorporating the application level and the physical level factor together. Experimental results show that, the average difference of the application level factor between our cube-based method and Monte Carlo golden simulation is less than 0.01. Moreover, compared with the baseline VPR placement and routing technique, the cross-layer optimized placement and routing algorithm can reduce the SER by 14% with no area and performance overhead.