Abstract
Excessive power dissipation caused by large amount of switching activities has been a major issue in scan-based testing. For large designs, the excessive switching activities during launch cycle can cause severe power droop, which cannot be recovered before capture cycle, rendering the at-speed scan testing more susceptible to the power droop. In this paper, we present a methodology to avoid power droop during scan capture without compromising at-speed test coverage. It is based on the use of a low area overhead hardware controller to control the clock gates. The methodology is ATPG (Automatic Test Pattern Generation)-independent, hence pattern generation time is not affected and pattern manipulation is not required. The effectiveness of this technique is demonstrated on several industrial designs.