2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)
Download PDF

Abstract

We investigate the problem of automated video classification by analysing the low-level audio-visual signal patterns along the time course in a holistic manner. Five popular TV broadcast genre are studied including sports, cartoon, news, commercial and music. A novel statistically based approach is proposed comprising two important ingredients designed for implicit semantic content characterisation and class identities modelling. First, a spatial-temporal audio-visual "concatenated" feature vector is composed, aiming to capture crucial clip-level video structure information inherent in a video genre. Second, the feature vector is further processed using principal component analysis to reduce the spatial-temporal redundancy while exploiting the correlations between feature elements. This gives rise to a compact representation fro effective probabilistic modelling of each video genre. Extensive experiments are conducted assessing various aspects of the approach and their influence on the overall system performance.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!