2012 28th IEEE International Conference on Software Maintenance (ICSM)
Download PDF

Abstract

Requirements traceability (RT) links help developers to understand programs and ensure that their source code is consistent with its documentation. Creating RT links is a laborious and resource-consuming task. Information Retrieval (IR) techniques are useful to automatically recover traceability links. However, IR-based approaches typically have low accuracy (precision and recall) and, thus, creating RT links remains a human intensive process. We conjecture that understanding how developers verify RT links could help improve the accuracy of IR-based approaches to recover RT links. Consequently, we perform an empirical study consisting of two controlled experiments. First, we use an eye-tracking system to capture developers' eye movements while they verify RT links. We analyse the obtained data to identify and rank developers' preferred source code entities (SCEs), e.g., class names, method names. Second, we use the ranked SCEs to propose two new weighting schemes called SE/IDF (source code entity/inverse document frequency) and DOI/IDF (domain or implementation/inverse document frequency) to recover RT links combined with an IR technique. SE/IDF is based on the developers preferred SCEs to verify RT links. DOI/IDF is an extension of SE/IDF distinguishing domain and implementation concepts. We use LSI combined with SE/IDF, DOI/IDF, and TF/IDF to show, using two systems, iTrust and Pooka, that LSIDOI/IDF statistically improves the accuracy of the recovered RT links over LSITF/IDF.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles