2011 International Green Computing Conference and Workshops
Download PDF

Abstract

The energy costs of running computer systems are a growing concern: for large data centers, recent estimates put these costs higher than the cost of hardware itself. As a consequence, energy efficiency has become a pervasive theme for designing, deploying, and operating computer systems. This paper evaluates the energy trade-offs brought by data deduplication in distributed storage systems. Depending on the workload, deduplication can enable a lower storage footprint, reduce the I/O pressure on the storage system, and reduce network traffic, at the cost of increased computational overhead. From an energy perspective, data deduplication enables a trade-off between the energy consumed for additional computation and the energy saved by lower storage and network load. The main point our experiments and model bring home is the following: while for non energy-proportional machines performance- and energy-centric optimizations have break-even points that are relatively close, for the newer generation of energy proportional machines the break-even points are significantly different. An important consequence of this difference is that, with newer systems, there are higher energy inefficiencies when the system is optimized for performance.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles