Logic in Computer Science, Symposium on
Download PDF

Abstract

A powerful and declarative means of specifying computations containing abstractions involves meta-level, universally quantified generic judgments. We present a proof theory for such judgments in which signatures are associated to each sequent (used to account for eigenvariables of the sequent) and to each formula in the sequent (used to account for generic variables locally scoped over the formula). A new quantifier, \bigtriangledown, is introduced to explicitly manipulate the local signature. Intuitionistic logic extended with \bigtriangledown satisfies cut-elimination even when the logic is additionally strengthened with a proof theoretic notion of definitions. The resulting logic can be used to encode naturally a number of examples involving name abstractions, and we illustrate using the \pi-calculus and the encoding of object-level provability.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles