2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
Download PDF

Abstract

This paper contributes to the techniques of topoalgebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a related Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction yields, in particular, a new characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles