Abstract
The demand for higher quality requires more effective testing to filter out the bad devices. It is already known that multi-detection of single stuck-at faults results in more fortuitous detections of defects not behaving as stuck-at faults, which increases the test quality. Existing multi-detect tests, i.e., the well-known n-detect tests, suffer from significant test size increases. This paper shows that embedding multi-detection of faults within regular ATPG patterns results in a higher quality without a significant increase in test set size. High-volume silicon measurement results demonstrate that embedded multi-detect tests detect 2.3% to 4.7% more defective devices than conventional single-detect stuck-at tests.